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There is a growing body of literature in which turbulent boundary layer flow along
a mixed-boundary corner formed by a vertical solid wall and a horizontal free
surface has been examined. While there is consensus regarding the existence of weak
secondary flows in the near corner region, there is some disagreement as to the exact
nature and origin of these flows. In two earlier works by the authors, evidence was
presented supporting the existence of a weak streamwise vortex which rotates in
toward the wall at the free surface and down away from the surface along the wall.
This ‘inner secondary vortex’ is accompanied by an ‘outer secondary flow’ which
transports low-momentum boundary layer fluid up along the wall and outward at
the free surface. The magnitudes of the cross-stream velocities associated with these
secondary flows were measured to be on the order of 1% of the free-stream speed.
In this paper, high-resolution DPIV measurements made in the cross-stream plane
are presented. These clearly show the inner and outer secondary flows. The cross-
stream vector fields allow computation of terms in the turbulent streamwise vorticity
transport equation. These terms indicate mean vorticity transport at the free surface
associated with the outer secondary flow. In addition there appears to be a balance
between the wall-normal and free-surface-normal fluctuating vorticity reorientation
terms.

1. Introduction
In the last few years, turbulence associated with the horizontal flow of water along

a vertical wall in the vicinity of a horizontal free surface, the ‘mixed-boundary corner’,
has received much of attention. Examples of recent works include experimental studies
by Grega et al. (1995), Longo, Huang & Stern (1998), and Hsu et al. (2000), and
large-eddy simulation studies by Thomas & William (1995) and Sreedhar & Stern
(1998). The motivation for these studies ranged from modelling ship wakes through
transport in rivers and channels, to anisotropies in manufacturing processes such as
papermaking.

A common finding in those studies is evidence of weak secondary flows, which are
believed to result from anisotropic boundary conditions. These secondary flows appear
to be similar to features reported by Gessner & Jones (1961, 1965) for turbulent flow
along a solid–solid corner, and by Logory, Hirsa & Anthony (1996) for the wake of
a surface-piercing plate. One of the basic open issues yet to be resolved, however,
is the exact nature of the secondary flows. There appears to be consensus regarding
the existence of some sort of streamwise vortex in the near corner region. However
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the size, strength, and even sense of rotation have not been established; certainly
the origins of this vortex have not been established. There is also general agreement
regarding the existence of a surface current that transports low-momentum boundary
layer fluid up along the wall and then away from the wall at the free surface. Again,
however, the nature of this flow has not been clearly demonstrated.

Much of the confusion is probably due to differences between the different studies.
These differences were detailed in Hsu et al. (2000). Briefly stated, experiments
reported by the present authors were conducted along the sidewall of a large free-
surface water tunnel where the flow may be assumed to be fully evolved with only weak
variations in the stream direction. By contrast, the experiments of Longo et al. (1998)
were for a towed surface-piercing plate with limited run time. It is possible that they
were measuring the early, temporally evolving development of the secondary flows.
In their concurrent simulations, Sreedhar & Stern (1998) employed a compressible
RANS code for which it is not clear that a comparison to their surface-piercing plate
results is even appropriate. Indeed, comparisons in Hsu et al. (2000) showed dramatic
differences between the results from the Rutgers experiments and Sreedhar & Stern’s
(1998) computations.

The objective of the present study, therefore, was to use direct high-resolution
measurements of the cross-stream plane in the mixed-boundary corner to definitively
document the secondary flows. It was further hoped that acquisition of such data
would shed light on the origins of these flows. Specifically, highly resolved, statisti-
cally convergent two-dimensional velocity field data would directly reveal the form,
strength, and extent of the mixed-boundary corner flows. Further, these measurements
could be used to compute terms in the streamwise vorticity transport equation. This
paper documents the results from this experiment.

2. A working model of mixed-boundary corner secondary flows
In Grega et al. (1995) and Hsu et al. (2000), a working model of secondary flows

formed in a mixed-boundary corner was developed. A schematic diagram appears in
figure 1. As shown in the drawing, the inner secondary vortex is weak, with flow in
toward the wall at the free surface and down away from the free surface along the
wall. This is analogous to secondary vortices found in flow along a corner formed
by two solid walls. Like the solid–solid corner, circumferential velocities in the solid–
free-surface corner vortex are on the order of 1% of the mean stream speed. Thus,
the inner secondary vortex is essentially a mean phenomenon; one would not expect
to see such a vortex in an instantaneous cross-stream measurement.

Evidence supporting the existence of this inner secondary vortex was obtained for
a narrow channel using DNS. Those findings were presented in Grega et al. (1995).
The inner vortex was found to be ∼100 viscous units in diameter with maximum
circumferential velocities on the order of 1% of the free-stream speed. Like the
schematic in figure 1, the inner secondary vortex was located close to the mixed-
boundary corner. Experimental data were also presented, both in Grega et al. (1995)
and Hsu et al. (2000). These results however, were obtained in planes parallel to the
free surface; there was insufficient resolution in the free-surface-normal direction to
conclusively map the inner secondary flows.

There is also no complete picture, either computational or experimental, of the
outer secondary flow shown in figure 1. In the DNS study reported in Grega et al.
(1995), the channel half-width was only 150 viscous units. A symmetry boundary
condition was imposed on the domain boundary opposite the no-slip wall. The free
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Figure 1. Schematic drawing of the hypothesized secondary flow patterns
in a mixed-boundary corner.

surface was represented as a shear-free boundary. Because of this limited width, it
was not possible to develop and resolve a free-surface current characteristic of many
free-surface turbulent flows. Instead, the DNS results indicated the formation of a
second ‘outer’ secondary flow directly below the ‘inner’, i.e. near corner, vortex.

By contrast, the centreline of the water tunnel used for the present experiments, and
those of Grega et al. (1995) and Hsu et al. (2000), was ∼ 2700 viscous lengths from
the test section sidewalls. This clearly was sufficiently large to permit development
of the outer secondary flow, also shown in figure 1. As discussed in the two earlier
papers, this outer secondary flow is the mean surface current responsible for transverse
spreading of turbulence at the free surface. In this flow, turbulent boundary layer fluid
is transported up toward the free surface along the wall, around the inner secondary
vortex and out away from the wall at the free surface. Free-surface currents of
this type have been reported for wake flows by Logory et al. (1996) and for near-
surface jets by Anthony & Willmarth (1992). For broader discussions of free-surface
currents, the reader is referred to Sarpkaya (1996) and Walker, Leighton & Garza-
Rios (1996).

As noted in this and the preceding section, there is, as yet, no conclusive validation
(or refutation) of the hypothesized secondary flow patterns shown in figure 1. How-
ever, with the availability of high-resolution DPIV measurement capabilities, direct
measurement of the flow is possible. There are, of course, significant experimental dif-
ficulties in making these measurements, including measurement resolution, adequate
sampling, parallax, etc. Thus, a significant component of this work lies in demon-
strating the accuracy of the reported measurements. For continuity, however, details
of measurement accuracy and parallax correction have been put into Appendices.
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Figure 2. Top and side view schematics of the free-surface water tunnel. Note that the pumps are
not shown.

3. Experimental apparatus and methods
Measurements reported in this paper are an extension of experiments previously

reported in Grega et al. (1995) and Hsu et al. (2000); the distinguishing feature of the
present data was the cross-stream measurement plane. Therefore, the experimental
apparatus and methods are only briefly outlined here. For detailed descriptions of
the facility and methodology, please refer to Smith (1992), Grega et al. (1995), Hsu
(1999), and Hsu et al. (2000).

Experiments were conducted along one sidewall of the large free-surface water
tunnel at Rutgers. Top and side view drawings of the tunnel are shown in figure 2.
The test section measured 58.4 cm in width× 122 cm in depth× 610 cm in length. The
maximum free-stream velocity with the test section filled was ∼ 30 cm s−1. Free-stream
turbulence levels were less than 0.1%.

For this study, the free-stream velocity was 12 cm s−1, corresponding to a Reynolds
number based on momentum thickness, Reθ , of 670. The friction velocity, uτ, at the
tunnel mid-height was 0.63 cm s−1, and the kinematic viscosity was 0.010 cm2 s−1. (It
should be noted here that Grega et al. 1995 and Hsu et al. 2000 documented variations
in friction velocity with depth close to the free surface. These variations are due to
boundary layer thickening associated with the outward free-surface current. For this
study, data were scaled using the friction velocity corresponding to the canonical
boundary layer at the tunnel mid-height, i.e. uτ = 0.63 cm s−1.)

Measurements were made along one of the test section sidewalls ∼ 380 cm down-
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Figure 3. Oblique view drawing showing the measurement configuration. The vertical laser sheet,
front-surface mirror oriented at 45◦ to the flow and digital video camera are shown.

stream of the inlet. A schematic drawing showing the DPIV optics appears in figure 3.
The drawing shows a laser sheet aimed through the test section sidewall to illuminate
a y, z section immediately below the free surface; care was taken to avoid reflections
from the free surface. Next, a front surface mirror, oriented at 45◦ to the flow di-
rection, was placed along the sidewall ∼ 60 cm downstream of the laser sheet. This
mirror permitted viewing of seeding particles passing through the laser sheet. Finally,
the video camera was placed opposite the mirror so that the reflected image of the
laser sheet filled the field of view.

High-resolution digital particle image velocimetry (DPIV) video images were gen-
erated using a Coherent Innova 70-5 argon-ion laser, a Texas Instruments TI-1134MP
black and white digital video camera, and a laser sweep circuit developed for these
measurements. The sweep circuit was used to rotate a small mirror, mounted on the
shaft of a galvanometer, to illuminate the flow at the end of one video frame and again
at the beginning of the next frame. The time between sweeps comprising a DPIV video
image pair, ∆t, was 4.4 ms. The flow was seeded with 3µm titanium dioxide particles.
The field of view of the camera for these studies was 2.14 cm (vertical)× 2.88 cm (hor-
izontal). This corresponds to 120 viscous lengths in the free-surface-normal direction
and 160 viscous lengths in the wall-normal direction.

DPIV image processing software was identical to that reported in Hsu et al.
(2000). The program employed a two-stage correlation algorithm in which a large
interrogation window was used for a highly accurate, though spatially averaged,
coarse displacement field. This was followed by a refined correlation stage in which
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Figure 4. Mean cross-stream velocity field with parallax correction applied.

corresponding interrogation windows were displaced by an amount prescribed by
the coarse displacement field. As in Hsu et al. (2000), one thousand instantaneous
DPIV image pairs were captured at ∼ 2 s intervals for a total sampling time in
excess of 30 mins. The fine correlation windows were 24 × 48 pixels with four times
over-sampling. A detailed discussion of uncertainties appears in Appendix B.

Before proceeding, it is important to note that nonlinear parallax effects were
significant. The nonlinearity arose because measurements were made in a boundary
layer where streamwise velocity varied strongly with distance from the wall. To
remove this effect, a parallax correction was developed. Details of this correction are
presented in Appendix A.

4. Results and discussion
This section contains spatially resolved measurements of secondary flow patterns

in a turbulent mixed-boundary corner flow. As discussed in § 1, the existence, form
and origins of the secondary flows are still open research issues. The fundamental
difficulty in mapping these patterns is that turbulence masks the underlying mean
flow; velocity magnitudes associated with the secondary flows are estimated to be
on the order of 1% of the free-stream speed. Thus, highly resolved and highly
accurate measurements are required to extract mean secondary motions from the
over-riding turbulence. The present data represent the first known direct mapping of
these secondary flows. In making these measurements, however, it was also possible
to obtain cross-stream turbulence data along with terms in the turbulent streamwise
vorticity transport equation. These results are presented along with thoughts on the
origins of the secondary flows.

Figure 4 shows the mean cross-stream velocity vector field in the mixed-boundary
corner. The solid wall appears along the left edge of the plot, while the free surface is
located along the top edge. The bulk flow direction in this and all subsequent figures
is into the page. The free-surface-normal and wall-normal directions are defined to
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Figure 5. Mean streamwise vorticity field scaled on inner variables. Dotted contours denote
negative values. Contour labels provide magnitude information.

be y and z, respectively. To maintain a right-hand coordinate system with streamwise
velocity into the page, distances below the free surface are negative.

The presence of weak mean secondary flows are clearly evident in figure 4; a
reference vector corresponding to v/uτ = 1 appears to the right of the plot for
comparison. For further clarification, a contour plot of mean streamwise vorticity is
shown in figure 5. From these plots, one can see the ‘inner secondary vortex’ centred
approximately at y+ ≈ −75 and z+ ≈ 35. The counter-clockwise sense of rotation, i.e.
negative vorticity, is consistent with DNS calculations and experimental observations
presented in Grega et al. (1995) and Hsu et al. (2000).

The free-surface current, which transports low-momentum boundary layer fluid
away from the wall close to the free surface, is also distinctly visible in both figures 4
and 5. In figure 5, this ‘outer secondary flow’ manifests itself as a horizontal band
of positive streamwise vorticity. Vorticity exists in this case because the region of
positive mean wall-normal velocity W occurs only close to the free surface; farther
from the surface, W tends to zero.

Figure 6 contains contour plots of wall-normal and free-surface-normal turbulence
intensities, w′/uτ and v′/uτ, respectively. The wall-normal data agree quite well with
measurements, presented in Hsu et al. (2000), obtained from horizontal (x, z)-plane
DPIV measurements; direct comparisons are included in Appendix B. Key features
described in Hsu et al. (2000) are also visible here. For example, observe that for a
fixed distance from the wall, w′/uτ decreases approaching the free surface. However,
close to the wall, w′/uτ rebounds slightly for −20 6 y+ 6 0. It was hypothesized in
Hsu et al. (2000) that this was due to a dramatic decrease in dissipation close to the
free surface.
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Figure 6. (a) Wall-normal turbulence intensities, w′/uτ, and (b) free-surface-normal turbulence
intensities, v′/uτ.
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Figure 7. Cross-stream Reynolds stress, −〈vw〉/u2
τ . Contours of mean cross-stream vorticity,

including magnitude labels, are overlaid for comparison.

A contour plot of cross-stream Reynolds stress, −〈vw〉/u2
τ , is shown in figure 7.

The salient feature of this figure is the patch of comparatively large Reynolds stress
coinciding with the boundary between the inner and outer secondary flows. For
ease of reference, iso-vorticity contours from figure 5 are presented as solid lines. In
this region, the magnitudes of −〈vw〉/u2

τ are approximately 0.2. By comparison, the
maximum magnitudes of the dominant Reynolds stress component, −〈uw〉/u2

τ , are
∼ 0.8. Thus, unlike a canonical boundary layer, cross-stream turbulent momentum
exchange is significant in the mixed-boundary corner.

The existence of anisotropic Reynolds stress distributions, particularly in the (y, z)-
plane, raises the issue of the origin of the secondary flows. In Gessner & Jones
(1965), weak streamwise vortices in the near corner region of a turbulent flow along
a solid–solid corner were hypothesized to result from anisotropic turbulent stresses.
To develop this argument, Gessner & Jones (1965) employed the mean turbulent
streamwise vorticity equation:

DΩx
Dt

= Ωx
∂U

∂x
+ Ωy

∂U

∂y
+ Ωz

∂U

∂z
+ ν∇2Ωx +

∂

∂x

{
∂〈uv〉
∂z
− ∂〈uw〉

∂y

}

+
∂2

∂y∂z
{〈v2〉 − 〈w2〉}+

{
∂2

∂z2
− ∂2

∂y2

}
〈vw〉. (1)

Here capital Ωi and U denote mean vorticity and local mean streamwise velocity, while
lower-case u, v and w indicate fluctuating velocities in the x-, y- and z-directions,
respectively. The angle brackets denote ensemble averaging. This equation can be
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Figure 8 (a, b). For caption see facing page.

generated by first taking the curl of the turbulent momentum equations and then
taking the mean. The left-hand side of the resulting equation represents rate of
change of vorticity following a fluid element relative to an inertial reference frame.
The first four terms on the right-hand side describe stretching, reorientation, and
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Figure 8. (a) Transport of mean streamwise vorticity in the wall-normal direction by the mean
flow, W∂Ωx/∂z. (b) Transport of mean streamwise vorticity in the free-surface-normal direction
by the mean flow, V∂Ωx/∂y. (c) Transport of fluctuating streamwise vorticity in the wall normal
direction by the turbulent flow, w∂ωx/∂z. (d ) Transport of fluctuating streamwise vorticity in the
free-surface-normal direction by the turbulent flow, v∂ωx/∂y. Again, mean cross-stream vorticity
contours have been overlaid for comparison.
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diffusion of mean vorticity by the mean flow. Finally, the last three terms represent
vorticity production by anisotropic turbulent stresses. For isotropic turbulence, these
final terms are identically zero.

An alternative representation of the mean turbulent streamwise vorticity equation
appears in Tennekes & Lumley (1972):

DΩx
Dt

+

〈
Dωx
Dt

〉
= Ωx

∂U

∂x
+ Ωy

∂U

∂y
+ Ωz

∂U

∂z

+ ν∇2Ωx +

〈
ωx
∂u

∂x

〉
+

〈
ωy
∂u

∂y

〉
+

〈
ωz
∂u

∂z

〉
, (2)

where lower case, ωi denotes fluctuating vorticity.
Note that one can obtain (1) from (2) by expanding all of the fluctuating terms and

employing incompressible continuity to eliminate terms. In so doing, one finds that the
anisotropic Reynolds stress terms in (1) are parts of the fluctuating vorticity advection
term, 〈Dωx/Dt〉, in (2). While the first anisotropy term, (∂/∂x){∂〈uv〉/∂z−∂〈uw〉/∂y},
originates from the streamwise advection term, u∂ωx/∂x. The second and third terms,
i.e. the last two terms in (1), are each formed by combining parts of the cross-stream
advection terms, 〈ωy∂u/∂y〉 and 〈ωz∂u/∂z〉. In a sense, the anisotropic Reynolds
stress gradient terms are decidedly non-physical. They are, however, commonly used
by those studying the solid–solid corner problem; the normal stress gradient term,
(∂2/∂y∂z){〈v2〉 − 〈w2〉}, has been shown to be important. This does not appear to be
the case for the mixed boundary corner problem. Indeed, all of the anisotropy terms
were found to be negligibly small.

The distinct advantages of (2) over (1) are the comparative ease of physical
interpretation of individual terms and the reduced resolution necessary to accurately
compute the turbulence terms. In the alternative form, (2), one can readily interpret
the fluctuating terms as the transport of fluctuating streamwise vorticity by the
turbulent fluid motions (the additional terms on the left-hand side of the equation)
and stretching and reorientation of turbulent vorticity by localized turbulent velocity
gradients.

Of the terms in (2), six can be directly computed from cross-stream data, including
the mean and fluctuating vorticity advection terms (V∂Ωx/∂y, W∂Ωx/∂z, 〈v∂ωx/∂y〉
and 〈w∂ωx/∂z〉), and two vorticity diffusion terms (ν∂2ΩX/∂y

2 and ν∂2Ωx/∂z
2). In

addition, continuity was used to compute the stretching of mean streamwise vorticity
by the mean axial strain field (Ωx∂U/∂x). These calculations indicate that the only
significant terms in the streamwise vorticity transport equation for this flow were the
four advection terms. It will be seen that even these quantities appear to be quite
small. For the complete data set, readers are referred to Hsu (1999).

Figure 8 is a composite of shaded contour plots showing the four streamwise
vorticity advection terms. Superimposed on each plot are line contours of mean
streamwise vorticity. Again all data have been non-dimensionalized by friction velocity
and kinematic viscosity. Mean transport in the wall-normal and free-surface-normal
directions are shown in figure 8(a, b), while the respective fluctuating transport terms
are shown in figure 8(c, d ).

Figure 8(a, b) indicates that transport of mean vorticity by the mean flow occurs
predominantly in the outer secondary region. That is, there is a horizontal band
of vertical vorticity transport close to the free surface in figure 8(b). This can be
explained by the coexistence of free-surface-normal velocity and vertical streamwise
vorticity gradients along the free surface. There is evidence of mean vorticity transport
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in the wall-normal direction along the wall as well, figure 6(a), but this is not as
strong an effect.

In figure 8(c, d ), there are patches of fluctuating vorticity advection in the near
corner region, in the range 10 6 z+ 6 70 and −10 6 y+ 6 −50. From the overlaid
vorticity contours, one can see that this region corresponds to the interface between
the inner secondary vortex where Ωx < 0, and the outer secondary flow, i.e. the free-
surface current, where Ωx > 0. Observe that the sign of the fluctuating wall-normal
transport, figure 8(c), is positive, while the fluctuating free-surface-normal transport,
figure 8(d ), is negative; the two figures are otherwise roughly identical (in size, location
and magnitude). Thus, it appears that there is no net transport of turbulent vorticity
due to fluctuating velocities. Taken in toto, however, the four advection terms in
figure 8 do not sum to zero. This implies that streamwise vorticity is being supplied
through stretching and reorientation of cross-stream vorticity components, though
data are not yet available to support this hypothesis.

5. Conclusion
High-resolution DPIV measurements were made in a cross-stream plane of a turbu-

lent mixed-boundary corner flow. These measurements clearly resolved the inner and
outer secondary flows which have been discussed, but not conclusively documented,
in a series of studies spanning the last decade. In addition, terms in the turbulent
streamwise vorticity transport equation were computed from the DPIV velocity fields.
These results indicate that there is an, as yet, undetermined source of streamwise
vorticity particularly in the outer secondary flow region close to the free-surface.

Partial support for this research from the Office of Naval Research (Grant#N00014-
92-J-1020) through Dr Edwin P. Rood is gratefully acknowledged. The authors also
acknowledge Mr Abram Voorhees for his help in obtaining data for the uncertainty
analysis. Finally, we appreciate the helpful discussions with Dr Richard Leighton of
the Naval Research Laboratory.

Appendix A. Parallax correction
As noted earlier, the unique feature of the present measurements was the use of a

cross-stream laser sheet, i.e. in the (y, z)-plane, where y and z denote the free-surface
and wall-normal directions, respectively. Use of this measurement plane, however,
creates a parallax problem as seeding particles pass through the illuminating laser
sheet. That is, because the camera imaging surface is smaller than the field of view,
particles moving toward the camera appear to have a radial motion away from
the central camera line-of-sight. This was particularly relevant in the current study
because the mean secondary-flow velocities were on the same order as the parallax
effect.

For a uniform flow, the parallax effect is an irrotational source flow where the
parallax velocities are proportional to distance from the camera line-of-sight. In the
present study, an additional correction is necessary because of spatial variations
in mean streamwise velocity owing to the presence of the solid and free-surface
boundaries. For shear flows, parallax velocities are linearly proportional to both
distance from the camera line-of-sight and local free-stream velocity.

Figure 9 shows the mean cross-stream velocity field for the mixed-boundary corner
without applying any parallax correction. One can clearly see that the inner secondary
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Figure 9. Uncorrected mean cross-stream velocity field.
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Figure 10. Parallax correction for the cross-stream mean velocity field including compensation for
the mean streamwise boundary layer profile.

vortex is not visible and that there appears to be a non-physical source located at
y+ ≈ −80 and z+ ≈ 110. Because the actual cross-stream velocities are on the same
order as the parallax velocities, it can be assumed that the apparent source is actually
the location of the line-of-sight of the camera.
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A parallax velocity correction was developed using the location of the line-of-
sight, identified in figure 9, and the mean turbulent boundary layer velocity profile
presented in Hsu (1999) and Hsu et al. (2000). The resulting correction field is shown
in figure 10. For simplicity, vertical variations in mean streamwise velocity were not
included in the correction. One can see in the figure that the horizontal component
of the parallax correction decreases on approaching the wall as a result of the no-slip
boundary.

The final mean cross-stream velocity field, shown in figure 4, can be obtained by
subtracting the parallax correction, figure 10, from the ‘raw’ mean cross-stream field,
figure 9. In practice, the parallax correction was subtracted from each instantaneous
velocity field. In this manner, the turbulence quantities shown in figures 5–8 also have
the parallax effect removed.

Because the parallax correction was approximate, a ‘dc’ bias was introduced to
the data. This is perhaps most evident in the cross-stream vectors closest to the free
surface shown in figure 4. Note they all have a small downward component. Since
the top row of vectors is not at the free surface, a small downward flow below
the surface is indeed possible. In the inner secondary flow region, the magnitude
of the downflow is ∼ 0.07 cm s−1. This is a reasonable estimate of the maximum
parallax correction bias. Note that the bias will reduce to zero on approaching the
camera line-of-sight. Though the bias is small, it does raise the issue of measurement
uncertainties, particularly for the vorticity transport terms. This is addressed in the
following Appendix.

Appendix B. DPIV measurement uncertainties
The principal goal in developing a DPIV processing program at Rutgers was to

generate accurate, high-resolution vector fields for computing complex turbulence
transport quantities. Unlike many commercial DPIV packages, accuracy was given
paramount priority at potentially significant cost to computational speed. In this study,
the robustness of the routine was severely tested by requiring accurate resolution of
mean secondary motions, two orders of magnitude smaller than the free-stream
speed. This Appendix addresses accuracy and uncertainty issues associated with the
measurements reported in the main body of this paper.

Note at the outset that there are three classes of uncertainty in the measurements
presented in this paper. The first is associated with convergence of stochastic processes
(i.e. turbulent statistics) for finite sample sizes. The second uncertainty arises from
the accuracy and resolution of the DPIV measurement technique. The third source
of uncertainty is ‘dc’ bias resulting from the parallax correction algorithm outlined
in Appendix A. This appendix is divided into four sub-sections. The first three
address each of the specific classes of uncertainty just identified. The fourth provides
uncertainties for all data shown in this paper with notes on how values were obtained.

B.1. Incomplete convergence of turbulence statistics

For the first class of uncertainties, ε, Lumley & Panofsky (1964) provide the fol-
lowing equation for determining the effect of finite sampling period for turbulence
measurements:

ε = U∞{2I(u′/Ulocal)
2/T }1/2. (B 1)

Here I is the integral time scale of the flow, and T represents the total sampling time.
In this case, the integral time scale can be estimated as δ/U∞ where δ is the boundary
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layer thickness. For this flow, the boundary layer thickness is approximately 5.7 cm
for a free-stream velocity of 12 cm s−1. In this case, then, the integral time scale is
approximately 0.48 s. The sampling period is 2000 s, and u′/Ulocal is estimated to be
0.3. Substitution into (B 1) yields a value for ε of 0.078 cm s−1 or ε+ = 0.125.

B.2. DPIV particle displacement resolution experiment

There is a range of uncertainty estimates in the literature for particle displacement
resolution, e, ranging from O(0.01) pixels at the low end, as proposed by Raffel, Willert
& Kompenhans (1998), to the more commonly accepted O(0.1) pixel uncertainty put
forward by Keane & Adrian (1992, 1993). Their typical uncertainty was reported as
∼ 0.05 pixels.

During its development, the current DPIV system was calibrated using a series
of steps including translation and rotation of a pattern of dots as well as solid-
body rotation of seeding particles in water. These tests are described in Hsu (1999).
Further benchmarking of this capability for turbulent energy transport in the mixed
boundary corner appears in Hsu et al. (2000). In that study, turbulent kinetic energy
production, dissipation and diffusion profiles were obtained which matched DNS
calculations. They proposed that the accuracy of the current DPIV system appears
to be better than 0.02 pixels.

Ultimately, the validity (and believability) of the uncertainty analyses presented in
Hsu (1999) and Hsu et al. (2000) depends heavily on assumptions made about the
sub-pixel accuracy of the DPIV algorithm. To better assess the accuracy of the current
DPIV system, therefore, an experiment involving direct measurements was conducted.
The experiment entailed obtaining 1000 DPIV velocity vector fields at a fixed location
in the laminar, potential-core region of the water-tunnel test section. Since the flow
is not, in fact, perfectly laminar, variations in velocity measurements may arise from
free-stream turbulence, DPIV uncertainty or mean spatial non-uniformity. To simplify
the analysis (and to err on the conservative side), variations in this data set were
attributed entirely to DPIV uncertainty.

B.2.1. Mean particle displacement uncertainty

With this simplifying assumption, measurement uncertainties were evaluated. First,
the convergence of the mean was examined as a function of the number of vector
fields in an ensemble. This is plotted in figure 11 for two different locations in the
vector fields. One can see that the mean pixel displacement in the x-direction, ∆x,
appears to be well-converged with 1000 vector fields. A conservative estimate of the
uncertainty in ∆x is ±0.002 pixels for an ensemble size, N, greater than 700. For the
current field of view and time between images, this corresponds to 0.00115 cm s−1. By
comparison, the uncertainty due to lack of convergence of finite sample turbulence
measurements was almost two orders of magnitude larger, ε ≈ 0.078 cm s−1.

B.2.2. R.M.S. particle displacement uncertainty

To estimate turbulence intensity uncertainties, the root-mean-square deviation in
x-component particle-displacement measurements were computed using the potential-
flow data set. This was done by computing the r.m.s. of ∆x measurements taken from
the same spatial location in each of the 1000 vector fields. Several different locations
were used to ensure spatial uniformity. The r.m.s. particle-displacement uncertainty
was found to be ∼ 0.0165 pixels. It is worth noting that this matches the estimate
presented in Hsu et al. (2000). In terms of the present experiment, this corresponds
to 0.0095 cm s−1.
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Figure 11. Convergence of mean particle displacement calculations for 1000 DPIV measurements
made in the potential laminar core of the test section, for two different locations.

B.2.3. Reynolds stress uncertainty

It would seem reasonable to assume that uncertainties associated with orthogonal
velocity components would be uncorrelated. That is, one would expect that the
uncertainty in Reynolds stress measurements due to DPIV error should be small.
This was in fact the case for the current system. The cross-correlation between
horizontal and vertical particle displacement measurements, 〈∆x∆y〉 was computed
for the 1000 potential-flow vector fields at fixed spatial locations. Like the r.m.s.
measurements, Reynolds stress uncertainties were calculated at a number of spatial
locations. 〈∆x∆y〉 was found to be ∼ 3.6×10−5 pixels2, corresponding to uncertainties
in the measured Reynolds stress, 〈uv〉, of ±1.2× 10−5 (cm s−1)2.

B.2.4. Uncertainty in spatial gradients

Each term in the vorticity transport equations, (1) or (2), contains ensemble averages
of spatial velocity derivatives. The usefulness of the transport terms shown in each
plot comprising figure 8, therefore, is directly a function of the uncertainty of ∂ui/∂xj
and ∂2ui/∂x

2
j . These uncertainties could also be computed from the potential laminar

flow data set.
Using central differences, uncertainties in 〈∂ui/∂x〉j and 〈∂2ui/∂x

2
j 〉 were found to

be 1.0 × 10−5 pixels/pixel and 1.5 × 10−7 pixels/pixel
2
, respectively. In dimensional

form, these uncertainties correspond to 9.4×10−5 s−1 and 2.3×10−5 cm−1 s−1. Like the
previous quantities, §B.2.2 and §B.2.4, uncertainties in spatial derivatives were com-
puted using the same spatial location in each of the 1000 independent vector fields.
Again, several locations were examined to ensure uniformity across the measurement
field.

Clearly, uncertainties in spatial derivatives are quite small, which may be explained
in terms of the four-times oversampling used by the particle displacement algorithm.
Consider an arbitrary vector location. Vectors on either side of this location were
computed using interrogation windows with 50% overlap. Any errors from the
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correlation routine would tend to be biased in the same direction. Thus, uncertainties
in local gradients are inherently small in DPIV.

B.3. Parallax correction uncertainties

Uncertainties associated with the parallax correction developed for this study were in-
troduced in Appendix A. These arise principally because of the approximate boundary
layer velocity profile used to account for non-uniform flow through the illuminating
laser sheet. Ideally, instantaneous streamwise velocity data would be needed across
the entire cross-stream field of view when each vector field was obtained.

The maximum magnitude of this bias was estimated to be 0.07 cm s−1 along the
top row of vectors in figure 10. Such a correction would make the vertical velocity at
the free surface in the inner secondary flow region zero. It was also noted that this
bias uncertainty would decrease to zero at the camera’s line-of-sight.

The impact of parallax correction bias on secondary vortex data presented in this
paper lies primarily in mean velocities and mean velocity gradients. The maximum
bias in mean spatial gradients is estimated to be 0.035 s−1 (0.07 cm s−1 divided by
∼ 2 cm distance between the point of maximum bias to the camera line-of-sight).
While turbulence fluctuation data, such as r.m.s. and Reynolds stresses, would also
be affected (because the correct mean velocities could not be subtracted from the
instantaneous measurements), this effect is arguably quite small because the maximum
bias is small relative to the instantaneous cross-stream velocities.

B.4. Uncertainties in the turbulence and vorticity transport data

Having quantified the different classes of uncertainty in this experiment, it is now
possible to calculate uncertainties in measured and derived quantities presented in the
body of this paper. A summary of all uncertainties appears in table 1, including those
outlined throughout this Appendix. Note that bias uncertainties due to the parallax
correction are listed separately from random statistical uncertainties due to DPIV
and incomplete convergence, etc. Two uncertainty values are provided. The first are
actual estimates non-dimensionalized by kinematic viscosity and the nominal friction
velocity, 0.63 cm s−1. The second uncertainty values, in parenthesis, are estimates of
percent uncertainty relative to the maximum values for the flow. For example, the
uncertainty for mean cross-stream velocities, 0.078 cm s−1, becomes 0.125 when non-
dimensionalized by friction velocity. In turn, this is ∼ 10% of the maximum value of
W shown in figure 4. Maximum values for higher-order turbulence quantities, such as
vorticity gradients, were estimated by examination of contour plots, such as figure 5.

Uncertainties associated with complex quantities, such as the vorticity transport
equation, were computed using a few simple rules. First, products or quotients of
quantities were assumed to have uncertainties equal to the sum of the component
uncertainties. Second, based on the uncertainty analysis work of Kline & McClintock
(1953), the total uncertainty in a multiple uncertainty measurement equals the square
root of the sum of the individual uncertainties squared. Finally, uncertainties in mean
gradients of fluctuating quantities, e.g. ∂u+

i /∂x
+
j and ∂ω+

x /∂x
+
j , were computed by

multiplying the uncertainty of the dependent variable by
√

2 and dividing by four
times the vector spacing. Although central differences are computed over twice the
vector spacing, four vector spacings were used in the uncertainty calculation because
of the four-times oversampling used in the DPIV algorithm. Every fourth vector is
statistically independent.

For example, the uncertainty of mean spatial gradients of u+
i , i.e. ∂u+

I /∂x
+
j , were

estimated by multiplying the uncertainty in u+
i (= 0.015) by

√
2 and dividing by four
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Turbulence quantity Maximum bias Statistical
uncertainty uncertainty

Mean velocities
Ui/uτ 0.11 (9%) 0.125 (10%)

Mean velocity gradients
∂U+

i /∂x
+
j 0.0018 (16%) 2.4× 10−6 (∼ 0%)

Mean vorticity gradients
(∂/∂x+

j ){∂U+
i /∂x

+
j − ∂U+

i /∂x
+
j } ∼ 0 (∼ 0%) 9.2× 10−9 (∼ 0%)

Turbulence intensities
ui/uτ ∼ 0 (∼ 0%) 0.015 (1.5%)

Fluctuating velocity gradients
∂u+

i /∂x
+
j ∼ 0 (∼ 0%) 0.0033 (11%)

Fluctuating vorticity gradients
(∂/∂x+

j ){∂u+
i /∂x

+
j − ∂u+

i /∂x
+
j } ∼ 0 (∼ 0%) 0.00072 (24%)

Reynolds stresses
−〈uiuj〉/u2

τ ∼ 0 (∼ 0%) 3.0× 10−5 (∼ 0%)
Mean vorticity advection

U+
j ∂Ω

+
i /∂x

+
j 2.7× 10−4 (9%) 3.0× 10−4 (10%)

Mean reorientation/stretching
Ω+
j ∂U

+
i /∂x

+
j 0.0012 (39%) ∼ 0 (∼ 0%)

Vorticity diffusion
ν∂2Ω+

i /∂x
+2
j ∼ 0 (∼ 0%) ∼ 0 (∼ 0%)

Mean vorticity advection
u+
j ∂ω

+
i /∂x

+
j ∼ 0 (∼ 0%) 7.5× 10−4 (25%)

Mean reorientation/stretching
ω+
j ∂u

+
j /∂x

+
j ∼ 0 (∼ 0%) 8.1× 10−4 (27%)

Table 1. Summary of bias and statistical uncertainties for turbulence and vorticity transport data
presented in this paper.

times the non-dimensional vector spacing. (The
√

2 reflects that the differential ∂uI
is the difference of two velocity values, each with identical uncertainty. From Kline
& McClintock (1953), then, the uncertainty in ∂uI is the square root of the sum of
the squares of the individual uncertainties, or

√
2 times the uncertainty in u+

I .) In
turn, the uncertainty in the ensemble-averaged fluctuating vorticity is

√
2 times the

uncertainty in ∂u+
I /∂x

+
j . And finally, the uncertainty in reorientation/stretching term

due to fluctuating quantities is the sum of the uncertainties of ω+
j and ∂u+

I /∂x
+
j . Note

that uncertainties for terms in the turbulent vorticity transport equation are given
only in terms of percentages. These were calculated using the percentage uncertainties
of the component quantities.

As a test of the uncertainty calculations, comparisons between present measure-
ments and data from Hsu et al. (2000) are shown in figures 12 and 13. Figure 12
shows profiles of mean wall-normal velocity, W+, as a function of distance from the
wall, z+, for different distances below the free surface. Figure 12(b) contains profiles
extracted from the present data shown in figure 4, while figure 12(a) contains similar
data presented in Hsu et al. (2000). The latter data were obtained using DPIV in
measurement planes parallel to the free surface.

The similarities between data sets are immediately obvious. There is agreement in
both the absolute numerical values as well as trends. There are, of course, differences;
the maximum values of W+ are larger for the present measurements, for example.
The bias introduced by the parallax correction as well as incomplete convergence
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Figure 12. Comparison of mean wall-normal velocity profiles, W+ vs. z+ from (a) Hsu et al. (2000)
and (b) present measurements. ◦, y+ = −19; �, y+ = −38.5; �, y+ = −56.4; 4, y+ = −76.0; +,
y+ = −95.6.

of the statistics account for most of these differences. However, one should also
recognize that there are uncertainties in assigning the free-surface location, and there
were probably differences in tunnel speed, water temperature, and other controlling
parameters between the two data sets. The time between acquisition of the two sets
was over a year.

Agreement between profiles of w′/uτ is also quite strong. These are shown in
figure 13. Again, data from the present study and from Hsu et al. (2000) are shown
in figures 13(a) and 13(b), respectively. Like the mean velocity counterparts, there
is excellent agreement between the two data sets. While the trends for different
distances below the free surface are also consistent between data sets, there is some
difference in magnitudes of w′/uτ particularly for the profiles farthest from the free
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Figure 13. Comparison of fluctuating wall-normal velocity profiles, w′/uτ vs. z+ from
(a) Hsu et al. (2000) and (b) present measurements. See caption figure 12 for symbols.

surface. This may be a manifestation of differences in determining the wall and
free-surface locations, in the mean values propagating into the r.m.s. calculation, or
simply differences in flow conditions between the two experiments.

Ultimately, the smoothness of the data and the ability to discern clear trends
between different spatial positions confirms the uncertainty limits presented in this
Appendix. The same techniques were used in Hsu et al. (2000) to compute terms
in the turbulent kinetic energy transport equation with similar success. There is
certainly sufficient accuracy in the present data to resolve the inner and outer
secondary flows hypothesized in earlier works, and to shed light on the origins
of these flows.
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